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ABSTRACT 
Many scientific applications and experiments, such as high 
energy and nuclear physics, astrophysics, climate 
observation and modeling, combustion, nano-scale material 
sciences, and computational biology, generate extreme 
volumes of data with a large number of files. These data 
sources are distributed among national and international 
data repositories, and are shared by large numbers of 
geographically distributed scientists. A large portion of data 
is frequently accessed, and a large volume of data is moved 
from one place to another for analysis and storage. One 
challenging issue in such efforts is the limited network 
capacity for moving large datasets to explore and manage. 
The Bulk Data Mover (BDM), a data transfer management 
tool in the Earth System Grid (ESG) community, has been 
managing the massive dataset transfers efficiently with the 
pre-configured transfer properties in the environment where 
the network bandwidth is limited. Dynamic transfer 
adjustment was studied to enhance the BDM to handle 
significant end-to-end performance changes in the dynamic 
network environment as well as to control the data transfers 
for the desired transfer performance. We describe the results 
from the BDM transfer management for the climate 
datasets. We also describe the transfer estimation model and 
results from the dynamic transfer adjustment. 
Keywords: Bulk data movement, Climate datasets, Earth System 
Grid, Dynamic transfer adjustment, Transfer estimation model 

1. INTRODUCTION 
Data intensive applications and experiments such as 
astrophysics, climate modeling, combustion, high energy 
and nuclear physics, nano-scale materials science and 
computational biology, is expected to generate exabytes of 
data over the next 5-10 years, which must be transferred, 
visualized, and analyzed by geographically distributed 
teams of researchers.  The large amount of data must be 
continuously moved from the data source repositories to 
scientists and to analysis, visualization, and storage 
facilities. The Earth System Grid (ESG) [1] is one of the 
communities that face the difficult challenge of managing 
the distribution of massive datasets to thousands of 
scientists around the world. An important new collection of 
climate datasets, referred to as the “replica centralized 
archive (RCA)”, is expected to comprise 1.2 petabytes (PB) 
during the Intergovernmental Panel on Climate Change 
(IPCC) Fifth Assessment Report (AR5) in 2011. The 

amount of data collected and produced is expanding at a 
staggering rate, and projected to exceed hundreds of 
exabytes by 2020 [2]. It takes 100 Gbps end-to-end 
bandwidth to move one petabyte in a day, and an additional 
10,000 times of performance increase is needed for 100 
exabytes in 2020. The ESG and others have recognized that 
the new centralized data and future datasets can only be 
efficiently served to researchers around the world by 
replicating it to sites closer to them [3]. To move data 
replicas efficiently, the ESG has developed a data transfer 
management tool called the Bulk Data Mover (BDM) [4] 
[10]. The BDM is responsible for the successful replication 
of large datasets, and achieves high performance using a 
variety of techniques. The performance of the BDM is 
controlled by the pre-configured transfer parameters such as 
number of concurrency and number of parallel streams. 
Higher preset on these transfer parameters may overload the 
storage and network capacity, and could result in overall 
performance decrease. Dynamic transfer adjustment is 
essential to handle the dynamics of the shared network 
environments as well as to optimize the BDM data transfers. 
The dynamic transfer management in BDM contributes to 
achieve the fully available network and storage bandwidth 
as well as to control the end-to-end data transfers for the 
desired transfer performance. 

2. BACKGROUND 
2.1 Earth System Grid 
As the climate community makes its first steps towards 
building a “science gateway” - a data access and analysis 
system open to everyone  - the “Earth System Grid” (ESG) 
is central to the current and future infrastructure that enables 
the large federated enterprise system for the dissemination 
and management of extreme scale climate resources. ESG 
provides climate resources such as data, information, 
models, analysis and visualization tools, and other 
computational capabilities for data management and 
diagnosis. The ESG project’s goals are (1) to make data 
more useful to climate researchers by developing Grid 
technology that enhances data usability; (2) to meet specific 
needs which national and international climate projects have 
for distributed datasets, data access, and data movement; (3) 
to provide a universal and secure web-based data access 
portal for broad-based multi-model data collections; and (4) 
to provide a wide-range of Grid-enabled climate data 



analysis tools and diagnostic methods to climate 
communities [5] [11]. Thus, ESG is working to integrate 
distributed data and computers, high-bandwidth wide-area 
networks, and remote computing using climate data analysis 
tools in a highly collaborative problem-solving 
environment.  
Since production began in 2004, the ESG has hosted and 
distributed significant and often very large data collections 
for many well-known efforts in climate science. As of April 
2010, the ESG production system has over 20,000 registered 
users. ESG manages approximately 270 TB of model data, 
comprising the contents of archives at five sites around the 
U.S. ESG users have downloaded more than 1PB of data. 

2.2 Bulk Data Mover 
Climate datasets are characterized by large volume of files 
with extreme variance in file sizes. BDM as a high-level 
data transfer management component handles the issue of 
large variance in file sizes and a big portion of small files by 
managing the file transfers with optimized transfer queue 
and concurrency management algorithms. The BDM 
achieves high performance using a variety of techniques, 
including multi-threaded concurrent transfer connections, 
data channel caching, load balancing over multiple transfer 
servers, and storage I/O pre-fetching. Logging information 
from the BDM is collected and analyzed to study the 
effectiveness of the transfer management algorithms.  
The BDM can accept a request composed of multiple files 
or an entire directory. The request also contains the target 
site and directory where the replicated files will reside.  If a 
directory is provided at the source, then the BDM will 
replicate the structure of the source directory at the target 
site.  The BDM is capable of transferring multiples files 
concurrently as well as using parallel TCP streams.  The 
optimal level of concurrency or parallel streams is de-
pendent on the bandwidth capacity of the storage systems at 
both ends of the transfer as well as achievable bandwidth on 
the wide-area network. Setting up the optimal level of 
concurrency is an important issue, especially in climate 
datasets, because of the many small files. Concurrency that 
is too high becomes ineffective (high overheads and 
increased congestion), and concurrency that is too low will 
not take advantage of available bandwidth. A similar 
phenomenon was observed when setting up the level of 
parallel streams. 
The BDM is designed to work in a “pull mode”, where the 
BDM runs as a client at the target site.  This choice is made 
because of practical security aspects: site managers usually 
prefer to be in charge of pulling data, rather than having 
data pushed at them.  However, the BDM could also be 
designed to operate in a “push mode”, or as an independent 
third-party service.  Because a large-scale data replication 
can take a long time (from many minutes to hours and even 
days) the BDM is an asynchronous service.  That means that 
when a replication request is launched, a “request token” is 

returned to the client.  The client should be able to use that 
request token to check the status of the request execution at 
any time.  Due to the long lasting nature of large-scale 
replication, request monitoring and recovery from any 
transient failures is another important part of the BDM.  

3. OPTIMAL TRANSFER MANAGEMENT 
3.1 Concurrent transfers and data streaming 
When the datasets consist of a mixture of large and small 
files such as the climate datasets, it is not simple to 
maximize the transfer performance with a prefixed number 
of concurrency and parallel streams. The typical file size 
distribution in climate dataset in Intergovernmental Panel on 
Climate Change (IPCC) Coupled Model Intercomparison 
Project, phase 3 (CMIP-3) indicates that most of the data 
files have less than 200MB of file size, and among those 
smaller files, file sizes less than 20MB have the biggest 
portion. Using parallel streams, in general, improves the 
performance of datasets with large files, and the pipelining 
technique in GridFTP transfer protocol [9,21] improves the 
performance of datasets with lots of small files within the 
transfer connection. However, when the file size is less than 
a certain threshold based on the available network 
bandwidth, parallel streams can decrease the performance of 
the file transfer.  

Figure 1 shows that a typical climate dataset transfer over a 
shared network. It shows transfer throughput performance 
from two data sources at LLNL to one destination at 
NERSC over time in seconds on different concurrency and 
number of parallel streams. 

 

 

 
Figure 1: Climate data replication from LLNL to NERSC over 
shared network. GridFTP transfers of climate dataset from two 
sources at LLNL to one destination at NERSC show throughput 
history over time in seconds on different transfer properties. 



BDM creates concurrent transfer connections, and have files 
streaming through the connections with a certain number of 
parallel streams. In Figure 1, BDM managed throughput 
performances in the climate datasets almost the same in 
transfers with different parameters, but transfers with less 
parallel streams show more consistency in file transfer rates 
throughout the request. For example, the transfers with 4 
concurrency and 8 parallel streams per data source (the plot 
with 4x8) have the same number of total streams 64 (4 
concurrency x 8 parallel streams x 2 data sources) as the 
transfers with 32 concurrency and 1 parallel stream (the plot 
with 32x1), but it shows more consistent transfer rates with 
1 parallel stream.  It indicates that the parallel streams do 
not have much effect in the transfer performance for this 
type of datasets.  
Multi-threaded concurrent connections and file streaming 
which open and maintain N different transfer connections 
and having N different files streaming through at the same 
time, has shown to improve the performance of datasets 
specially with the mixture of large and small files. Each 
connection performance depends on how to maintain the file 
streaming within the transfer connection without gaps 
between file transfers. Figure 2 shows the number of 
concurrency over time in seconds in transfers with different 
transfer parameters. They are from the same transfer runs 
from Figure 1. It shows that BDM maintains the number of 
concurrency throughout the transfer run without gaps 
between file transfers. BDM achieves the high density of 
data flows by maintaining transfer queue and storage I/O 
pre-fetching.   

 

3.2 Balanced transfer connections 
When multiple transfer sources are available, transfer 
connections can be balanced, and the overall throughput 
performance to the destination can be increased. Balancing 
algorithm can be as simple as round robin over multiple 
transfer sources or based on the available bandwidth for 

each transfer source. BDM manages concurrent connections 
in mixture of round robin and total file sizes in the transfer 
queue per connection. BDM transfer queue management 
module assigns files to transfer queue for each concurrent 
transfer connection, and when it detects the total sizes of the 
files waiting in the queue is more than the certain threshold, 
the connection does not get any more files assigned until file 
transfers are completed in that particular connection. In that 
way, each transfer connection maintains similar byte sizes in 
its transfer queue to other transfer connections, but not the 
similar number of files unless the files are all in similar 
sizes. Figure 1 and Figure 2 show transfers from two data 
sources (one shown in green and another shown in red), and 
number of total concurrent transfers and cumulative 
throughput are very similar for two data sources. 

3.3 Transfer Queue Management 
Transfer queue management and concurrent connection 
management contribute to more transfer throughput, 
including both network and storage. When the dataset has a 
large variance in the file sizes, continuous data flow from 
the storage into the network can be achieved by pre-fetching 
data from storage on to the transfer queue of each 
concurrent transfer connection. This overlapping of storage 
I/O with the network I/O helps improve the transfer 
performance.  

 
As in Figure 3, BDM manages a DB queue from the 
concurrent transfer connections, and also manages the 
transfer queues for concurrent file transfers. Each transfer 
queue checks the configurable threshold for the queued total 
files size and gets more files to transfer from the DB queue 
when the queued total files size goes below the configured 
threshold. Default threshold is set to 200MB based on the 
file size distribution as discussed in section 3.1. 
Storage I/O pre-fetching includes inode creation for writing 
files at the destination. In many file system cases, many 

 
Figure 3: Transfer and concurrency management in BDM, 
showing dynamic transfer adjustment 

 

 
Figure 2: Climate data replication from LLNL to NERSC over 
shared network showing concurrent GridFTP transfers and load 
balancing over multiple data sources 



inode creations at the same time cause a significant 
overhead in file system performance, and this overhead 
affects the transfer performance. By creating inodes at the 
destination paths when files are being on the transfer queue, 
BDM achieves faster storage I/O during the transfers. 
Figure 4 shows another climate data transfers from LLNL to 
NERSC for 4.8TB of a climate dataset from two source 
servers to one destination. Transfer throughput was 
consistent most of the time throughout the request, as 
expected. In the middle of the dataset transfers, low 
performance was detected, as shown in the middle of the 
plot, but the number of concurrency was still at 64 all 
together. This caused each concurrent connection 
performance to be much lower, and may have caused packet 
loss too. The dynamic transfer adjustment can help this case 
in minimizing overhead of slow data transfers during the 
low performance period, and the BDM can reduce the 
number of concurrent transfers to maximize the per-
connection throughput which could maximize the resource 
usability during those time.  

 
4. DYNAMIC TRANSFER ADJUSTMENT 
Characteristics of the communication infrastructure 
determine which action should be taken when tuning data 
transfer operations in order to obtain high transfer rates. 
Local area networks and wide area networks have different 
characteristics, so they demonstrate diverse features in terms 
of congestion, failure rate, and latency. In most cases, 
congestion is not a concern in dedicated high bandwidth 
networks. However, the latency wall in data transfers over 
high bandwidth connections is still an issue [12,13,14]. 

Enough data should be obtained from the applications and 
storage layers for high throughput performance. Data 
transfer optimization has been deeply studied in the 
literature [15,16,17]. However, many of the solutions 
require kernel level changes that are not preferred by most 
domain scientists. In this study, we concentrate on 
application level auto-tuning methodologies that are applied 
in user-space for better transfer performance [18,19,20,21]. 
Using multiple data transfer streams is a common technique 
applied in application layer to increase the network 
bandwidth utilization [13,17,22]. Instead of a single 
connection at a time, multiple streams are opened for a 
single data transfer service. Larger bandwidth in a network 
is gained with less packet loss rate; concurrent data transfer 
operations that are initiated at the same time better utilize 
the network and system resources.  

4.1 Application-level dynamic tuning 
To achieve high throughput, the number of multiple 
connections needs to be adjusted according to the capacity 
of the underlying environment. There are several studies on 
parameter estimation in order to predict the network 
behavior and to find a good estimation for the level of 
parallelism [17,22,23,24,25]. However, those techniques 
usually depend on performance results of sample transfers 
with different parameters. The systems probe and 
measurements with external profilers are needed. Complex 
models are used to calculate the optimum number of 
multiple streams with the help of sample measurements in 
order to make a prediction [23,25,26]. Further, network 
conditions may change over time in the shared 
environments, and the estimated value might not reflect the 
most recent state of the system. The achievable end-to-end 
throughput and the system load in communicating parties 
might change during the period of a data transfers, 
especially when large volume of data needs to be 
transmitted.  
Dynamically setting the number of optimal parallel streams 
has been introduced in [27]. Further, there are several 
studies in adaptive parameter tuning [20,22]. We have 
designed a similar approach in which the number of 
concurrent connections is set dynamically in a large-scale 
data transfer. The proposed methodology operates without 
depending on any historical measurements and does not use 
external profiles for measurement. Instead of using 
predictive sampling as proposed in [17,25,26], we make use 
of the instant throughput information gathered from the 
actual data transfer operations that are currently active. The 
number of multiple streams is set dynamically in an 
adaptive manner by gradually increasing the number of 
concurrent connections up to an optimal point.  The 
adaptive approach does not require complex models for 
parameter optimization. This also enables us to adapt 
varying environmental conditions to come up with a high-
quality tuning for best system and network utilization. 

 

 
Figure 4: Climate data replication from LLNL to NERSC over 
shared network. Transfers from 11208 files in 4.8TB of climate 
dataset from two sources at LLNL to one destination at NERSC 
with 32 concurrency and 1 parallel stream for each data source 
show throughput history over time in seconds on the top and the 
number of concurrency over time in seconds on the bottom.  



Gradually improving concurrency level brings a near 
optimal value without the burden of complex optimization 
steps to find the major bottleneck in a data transfer. In this 
adaptive algorithm, a change in the performance is detected 
and the number of concurrent connections is adjusted 
accordingly. Figure 5 shows the results from an adaptive 
transfer performance with the number of concurrent TCP 
streams. We have conducted our experiments in a 1-Gbps 
network where synthetic data transfer operations were 
started in order to simulate a communication channel with 
the shared bandwidth.  The adaptive tuning by adjusting the 
concurrency level dynamically results better throughput 
performance. Figure 5.a shows the number of streams over 
time in seconds. Figure 5.b shows the total volume of data 
transferred over time, and Figure 5.c shows the instant 
throughput measured while data transfer operation is active. 
The changes in the performance as in Figure 5.c were 
detected, and the number of concurrent streams was 
adjusted over time as in Figure 5.a.  

 
Instead of making measurements with external profilers to 
set the level of concurrency, transfer parameters are 
calculated using information from current data transfer 
operations. Thus, the network would not have extra packets 
and extra load is not put onto the system due to extraneous 
calculations for exact parameter settings. The number of 
multiple streams is set by observing the achieved 
application throughput for each transfer operation, and 
parameters are gradually adjusted according to the current 
performance merit. The transfer time of each operation is 
measured and the total throughput is calculated. The best 
throughput for the current concurrency level is recorded. 
The actual throughput value of the data transfers is 
calculated, and the number of multiple streams is increased 
if the throughput value is larger than the best throughput 

seen so far.  In this dynamic approach, we try to reach to a 
near optimum value gradually, instead of finding the best 
parameter achieving the highest throughput at once.  
We underline the fact that the focus is on application level 
tuning such that we do not deal with low-level network and 
server optimization. We adjust the number of multiple 
streams according to the dynamic environmental conditions, 
and also taking into the consideration of the fact that there 
might be other data transfer operation using the same 
network resources. 

 
We first start with a single stream of a transfer and measure 
the instant achievable throughput. The number of concurrent 
transfers running at the same time is increased gradually as 
long as there is any performance gain in terms of overall 
throughput. Although this incremental approach is practical 
especially for a large-scale data transfer that takes time to 
complete, a good starting point is highly desirable in terms 
of the number of multiple streams. Inspired from the TCP 
congestion window mechanism, we benefit from 
exponentially increasing the concurrency level in the 
beginning of the tuning process. Figure 6 gives a glimpse of 
the algorithm used to set the optimum concurrency level. 
We analyze the search pattern in two phases. In the first 
phase, we exponentially increase the number of multiple 
streams to quickly find a good starting point. In the second 
phase, we gradually set the concurrency level by measuring 
instant throughput between every parameter update in order 
to come up with the optimal number of multiple streams in a 
dynamic manner. 
The interval between the adjustment points is another 
important issue. We measure the instant throughput 
performance, but it may not be appropriate to make 
adjustment on the number of concurrent streams after every 
measurement point. Considering the possibility of minor 
fluctuations in the network throughput performance, we set 
a threshold value based on the transferred data size before 
observing any changes in the achievable throughput 
performance and deciding the needs of adjustments on the 

 
Figure 6: Algorithm searching for the optimal concurrency level 

 
Figure 5: Dynamic transfer adjustment: (a) TCP streams, (b) total 
bytes transmitted, (c) instant throughput over the time in seconds. 



number of concurrent streams.  This property has also 
shown in Figure 5.a where the number of concurrent 
streams is adjusted based on the major changes in the 
achievable throughput. Figure 5.c shows the corresponding 
changes in the instant throughput during the entire transfer. 
If a significant drop change in the throughput performance 
has been detected, the number of concurrent streams is 
decreased by half (N/2), and searching for the optimal 
number of concurrent streams gets started as described in 
Figure 6.  

4.2 A Simple Throughput Prediction Model 
We have performed several experiments with various file 
sizes by changing the number of concurrent TCP streams. 
Figure 7 shows the overall throughput performance over the 
number of concurrent TCP streams under different round 
trip time (RTT) values when different sizes of files are 
transferred. The first observation is that, the latency directly 
affects the behavior of the throughput performance curve. 
Figure 7.a shows throughput performance on a 10-Gbps 
network with round-trip time 0.5ms. As seen in Figure 7.b, 
more TCP streams are needed to fill the network bandwidth 
when latency is higher. 

 
 Our second observation is that we can use power-law to 
come up with a simple prediction schema. We see that the 
relationship between the number of multiple streams and the 
throughput gain can be approximated by a simple power-
law model. Figure 8 illustrates log-log graphs for total 
throughput versus the number of multiple streams. We can 
classify the behavior into two parts. In the first part, where 
we reach 80% of the achievable throughput, the power law 
approximation models the behavior of the multiple streams 
versus throughput. Based on this information, we present a 
power-law approximation to predict the number of multiple 
streams.  

Power-law demonstrates the mathematical relationship 
between two quantities where one attribute varies as a 
power of another attribute. Many functions, especially man-
made phenomena, follow power law [28,29].  In our case, 
the achievable throughput varies as a power of the number 
of streams where the scaling exponent is related to the 
round-trip time. It seems to represent the tradeoff between 
the gain and the cost of adding TCP streams in a data 
transfer operation over a network.  

 
A simple model was also developed to estimate the starting 
point based on round-trip time (RTT) between the source 
and destination hosts. The goal is to set the initial number of 
multiple streams that would be calculated in the fast-start 
phase of the algorithm given in Figure 6, and it will be used 
as the base point in the second phase of the algorithm, 
where we gradually adjust for optimum tuning. Note that we 
try to obtain a good starting point that will be used later for 
fine-tuning.  
The power law approximation is modeled as 

         T = (n / c) (RTT / k)                               (1) 

where T is achievable throughput in percentage, n is the 
number of multiple streams (n > 0), RTT is the round trip 
time, and c and k are constant factors.  Unlike other models 
[23,24,25] trying to find an approximation model for the 
multiple streams and throughput relationship, this model 
only focuses on the initial behavior of the transfer 
performance. 
As in Figure 9, test runs show achievable throughput over 
the number of concurrent transfers in different RTT values. 
When RTT is low, the achievable throughput starts high 
with the low number of streams and quickly approaches to 
the optimal throughput. When RTT is high, more number of 
streams is needed for higher achievable throughput. Our 
goal is to come up with a proper starting point for the 
number of concurrent streams. The simple estimation model 
must capture the relationship between the latency and the 

 
Figure 8: Total throughput over the number of streams (log-log 
scale).  

 
Figure 7: Total throughput over the number of streams;  
(a) rtt=0.5 ms, (b) rtt=70ms 



throughput performance. The initial estimation value will be 
used in dynamic parameter tuning for the optimum number 
of streams.  
Since our simple model estimates the achievable throughput 
in percentage, (n / c) should be less than 1. Further, the 
exponent (RTT / k) should be less than 1, in order to capture 
the relationship between the achievable throughput in 
percentage and cost of adding additional transfer streams 
into the transfer operation. In our test, shown in Figure 9, 
where we have conducted experiments over high-bandwidth 
networks with high and low latency, we set c as 100 as the 
maximum number of concurrent streams, and k as 300 the 
maximum RTT. The constant values in the given formula 
can be adjusted to obtain more accurate model. However, 
accurate starting point is not required in our case, and the 
model can estimate the number of streams to give 80% of 
achievable throughput performance as starting point, similar 
to 80-20 rule in Pareto distributions [29]. 

0.8 = (n / c) (RTT / k)                                         (2) 

n = (e ( k * ln 0.8 / RTT )) · c                    (3) 
According to the equation (3), the initial estimated value for 
number of streams n is; 10 if RTT is 30ms (Figure 9.d), 38 if 
RTT is 70ms (Figure 9.e), 61 if RTT is 140ms (Figure 9.f), 
and 0.1 (which is rounded to 1) if RTT is 10ms (Figure 9.c). 

 
A simple throughput prediction model for approximating 
the initial behavior of the transfer performance would be 
effective in quickly obtaining high transfer performance in 
BDM, and dynamic transfer adjustment contributes to the 
management in BDM for the optimized as well as controlled 
transfer performance. 

5. TESTBED 
The Green Data Oasis (GDO) [6] at LLNL has over 600 TB 
of spinning disk and serves 35 TB of IPCC CMIP-3 multi-
model data. Two GridFTP server nodes with Solaris 10 
running ZFS on AMD-64 hardware were used with access 
to the 10-Gbps ESnet network. Two NERSC Data Transfer 
Nodes [7] were used to transfer data located on NERSC 
storage units based on GPFS. A 10-Gbps SDN through 
OSCARS [8] could be reserved through ESnet between 
NERSC and LLNL. In this test setup, randomly selected a 
few climate datasets from IPCC CMIP-3 were replicated for 
test runs under different transfer conditions. Dataset sizes 
range from 40 GB to 10 TB. 

6. CONCLUSION 
The ESG has the difficult challenges of managing the 
distribution of massive datasets and accessing and analyzing 
them. The IPCC CMIP-3 holds over 35 TB of data at the 
LLNL site. The IPCC Coupled Model Intercomparison 
Project, phase 5 (CMIP-5) is projected to be 10 PB. Bulk 
Data Mover (BDM) is to provide the efficient data delivery 
required for the scalability that the ESG needs for data 
access in the highly collaborative decentralized 
environment, with efficient and adaptive transfer 
management. The dynamic transfer adjustment model gives 
a base for optimal transfer throughput management. The test 
runs in real shared environment show that the dynamic 
transfer management in BDM with the dynamic transfer 
estimation for approximating the initial behavior of the 
transfer performance is effective in obtaining optimal 
transfer performance as well as controlling the data transfers 
at the desired performance for the climate datasets that are 
characterized by large volume of files with extreme variance 
in file sizes. 
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